
MATH2050C Assignment 2

Deadline: Jan 23, 2024.

Hand in: Section 2.4 no. 2, 8, 9, 14, 17.

Section 2.4 no. 1, 2, 7, 8, 9, 10, 14, 15, 17.

Supplementary Problems

1. Show for each positive number a and n ≥ 2, there is a unique positive number b satisfying
bn = a. Suggestion: Use Binomial Theorem in Ex 1.

2. A real number is called an algebraic number if it is a root of some equation anx
n +

an−1x
n−1+· · ·+a0 = 0 with integral coefficients. Show that the set of all algebraic numbers

is a countable set containing all rational numbers and numbers of the form a1/k, a > 0, k ≥
1.

See next page for a note on real numbers.
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The Real Number System: Further Properties

From the Order Completeness Axiom (Completeness Property) we deduce

Archimedean Principle I. For any positive real number a, there is a natural number n such
that 0 < a < n.

Archimedean Principle II. For any positive real number ε, there is a natural number n such
that 0 < 1/n < ε.

Corollary 1 For any a > 0, there is an m ∈ N such that m− 1 ≤ a < m.

Corollary 2 For any real numbers a, b, 0 < a < b, there is a rational number lying strictly
between a and b.

Immediately it implies there are infinitely many rational numbers strictly lying between a and
b. Applying this to the numbers a/

√
2 and b/

√
2 it shows the same results hold when “rational”

is replaced by “irrational”.

Proof. It suffices to show there is some m/n ∈ (a, b). In fact, since b− a > 0, by Archimedean
Principle, there is some n ∈ N such that b− a > 1/n, that is, n(b− a) > 1, or nb > na + 1. On
the other hand, Corollary 1 ensures that there is some m such that m− 1 ≤ na < m. It implies
a < m/n. As nb > na + 1 ≥ m− 1 + 1, we have b > m/n too.

Theorem There is a positive number a satisfying a2 = 2.

Write this a as
√

2 or 21/2. In general, one can use the same argument to show there is a positive
number b satisfying b2 = r some for any given positive real number r. We shall use

√
r or r1/2

to represent this number b.

Proofs of these results can be found in Text.

So far we know that rational numbers are of the form m/n. But how about irrational numbers?
Now we show that every real number has a decimal representation.

The algorithm is: Let a be a positive number. First, find n0 ∈ N such that 0 ≤ a−n0 < 1. The
existence of n0 is guaranteed by Corollary 1 (taking n = m−1). Then 0 ≤ 10(a−a0) < 10. Next,
we find n1 ∈ {0, 1, 2, · · · , 9} to satisfy n1 ≤ 10(a− n0) < n1 + 1. Then 0 ≤ 10(a− n0)− n1 < 1
and 0 ≤ 10[10(a − n0) − n1] < 10. We find n2 such that n2 ≤ 10[10(a − n0) − n1] < n2 + 1, so
0 ≤ 10[10(a − n0) − n1] − n2 < 1 and 0 ≤ 10{10[10(a − n0) − n1] − n2} < 10. Repeating this
process, we get nk, k ≥ 2 in {0, 1, 2, · · · , 9}, such that

0 < a− n0.n1n2 · · ·nk <
1

10k
, k ≥ 1 .

We note

• The sequence {n0, n0.n1, n0.n1n2, n0.n1n2n3, · · · } is increasing and taking a as its supre-
mum.

• Every positive number has a decimal representation in this way.

• Define T be the mapping from R to the space of all decimal numbers. The mapping is
one-to-one but not onto. A decimal number is not in the range of T iff there is some k
such that nk = nk+1 = nk+2 = · · · = 9.

• A real number is rational iff its decimal representation becomes periodic after some digit,
for instance, 12/5 = 2.4000 · · · , 80/13 = 0.615384615384 · · · , etc.
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We recall here the notion of a cardinal number, which is needed for further properties of real
numbers.

Each nonempty set A is assigned a symbol called its cardinal numbers denoted by |A|. It is
equal to the number of elements when the set is a finite one. Recall

• Two sets have the same cardinal numbers if there is a one-to-one onto mapping between
them.

• Define |A| ≤ |B| if there is a one-to-one mapping from A to B, and |A| < |B| if |A| ≤ |B|
but there is no one-to-one mapping from B to A.

• ≤ is a partial order on the sets. That is, (a) |A| ≤ |A|, (b) |A| ≤ |B|, |B| ≤ |C| imply
|A| ≤ |C|, and (c) |A| ≤ |B|, |B| ≤ |A| imply |A| = |B|.

• Given two sets A and B, either |A| < |B|, |B| < |A| or |A| = |B|.

Properties (a) and (b) are obvious, but (c), called Schroder-Bernstein theorem, needs a proof.
We will not dig into it.

Denote the cardinal number of the set of natural numbers N by N0. A set is called a countable
set if it is a finite set or its cardinal number is equal to N0. An infinite set is uncountable if it
is not countable.

Proposition 1. For every infinite set A, |A| ≥ N0.

Therefore, countable infinity is the smallest infinity. A little bit surprising is the following result.

Proposition 2. |Q| = N0.

The proof was done in class. Note that essentially the same argument establishes the following
proposition.

Proposition 3. Let Aj , j = 1, 2, · · · , be a sequence of countable sets. Then
⋃

j≥1Aj is countable.

Proposition 4. |R| > N0.

The proof of this proposition makes use of decimal representation. It shows that there is a
cardinal number greater than N0, the smallest one. Therefore, an uncountable set exists. In
fact, Cantor shows that it is always true that the cardinal number of the power set of a set is
always greater than the cardinal number of the set itself. By taking power of power of power
etc, one concludes that there are infinitely many cardinal numbers, one greater than the other.

All these propositions were proved in class, and are not reproduced here.

Since |N| < |R|, it is natural to ask, is there a set A whose cardinal number lying strictly between
the set of natural numbers and the set of real numbers, that is, |N| < |A| < |R|? This is called
the continuum hypothesis. It is known that it is independent of ZF set axioms, the foundation
of mathematics used today. It means that the continuum hypotheses can never be proved or
disproved!


